Highest vectors of representations (total 9) ; the vectors are over the primal subalgebra. | \(-g_{1}+g_{-4}\) | \(h_{2}\) | \(-g_{4}+g_{-1}\) | \(g_{3}\) | \(g_{6}\) | \(g_{9}\) | \(g_{5}\) | \(g_{8}\) | \(g_{7}\) |
weight | \(0\) | \(0\) | \(0\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(-\psi\) | \(0\) | \(\psi\) | \(2\omega_{1}-2\psi\) | \(2\omega_{1}-\psi\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}+\psi\) | \(2\omega_{1}+2\psi\) |
Isotypical components + highest weight | \(\displaystyle V_{-\psi} \) → (0, -1) | \(\displaystyle V_{0} \) → (0, 0) | \(\displaystyle V_{\psi} \) → (0, 1) | \(\displaystyle V_{2\omega_{1}-2\psi} \) → (2, -2) | \(\displaystyle V_{2\omega_{1}-\psi} \) → (2, -1) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0) | \(\displaystyle V_{2\omega_{1}+\psi} \) → (2, 1) | \(\displaystyle V_{2\omega_{1}+2\psi} \) → (2, 2) | |||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | ||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
| Cartan of centralizer component.
|
|
|
| Semisimple subalgebra component.
|
|
|
| ||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(0\) | \(0\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | ||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(-\psi\) | \(0\) | \(\psi\) | \(2\omega_{1}-2\psi\) \(-2\psi\) \(-2\omega_{1}-2\psi\) | \(2\omega_{1}-\psi\) \(-\psi\) \(-2\omega_{1}-\psi\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}+\psi\) \(\psi\) \(-2\omega_{1}+\psi\) | \(2\omega_{1}+2\psi\) \(2\psi\) \(-2\omega_{1}+2\psi\) | ||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{-\psi}\) | \(\displaystyle M_{0}\) | \(\displaystyle M_{\psi}\) | \(\displaystyle M_{2\omega_{1}-2\psi}\oplus M_{-2\psi}\oplus M_{-2\omega_{1}-2\psi}\) | \(\displaystyle M_{2\omega_{1}-\psi}\oplus M_{-\psi}\oplus M_{-2\omega_{1}-\psi}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+\psi}\oplus M_{\psi}\oplus M_{-2\omega_{1}+\psi}\) | \(\displaystyle M_{2\omega_{1}+2\psi}\oplus M_{2\psi}\oplus M_{-2\omega_{1}+2\psi}\) | ||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{-\psi}\) | \(\displaystyle M_{0}\) | \(\displaystyle M_{\psi}\) | \(\displaystyle M_{2\omega_{1}-2\psi}\oplus M_{-2\psi}\oplus M_{-2\omega_{1}-2\psi}\) | \(\displaystyle M_{2\omega_{1}-\psi}\oplus M_{-\psi}\oplus M_{-2\omega_{1}-\psi}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+\psi}\oplus M_{\psi}\oplus M_{-2\omega_{1}+\psi}\) | \(\displaystyle M_{2\omega_{1}+2\psi}\oplus M_{2\psi}\oplus M_{-2\omega_{1}+2\psi}\) |
2\\ |